-
space over GF(2), has the particular property that each of its points is represented by one and only one non-zero vector of V . We therefore identify V \ {000} with PG(5, 2). Recall the matrices dened in (1). The matrix of the alternating bilinear form from (15) with respect to the basis (19) equals to the 6 × 6 matrix diag(K, K, K) over GF(2). In order to obtain a Mšbius pair o (20) P = {P0 , P1 , . . . , P5 }, Q = {Q0...
www.ta3.sk/~msaniga/pub/ftp/moebius.pdf
-
A round number r is assigned to each of the full rounds across all permutations, to specify the constants and counter to use in each round. The permutations are taken in the order P0 , P1 , . . . , P5 , Q0 , Q1 and only the full rounds are counted, i.e., the last round of each permutation is ignored.
www.cosic.esat.kuleuven.be/publications/thesis-171.pdf
-
can translate our results from Section 2 as follows: First, we multiply T with the “old” coordinate vectors from there and, second, we express these “new” coordinate vectors as triplets in terms of 0, x, y, z. The vertices P0 , P1 , . . . , P5 and Q0 , Q1 , . . . , Q5 can be read o, respectively, from the rst and second row.
www.geometrie.tuwien.ac.at/odehnal/mpscpo.pdf
-
0,1039. #OM #OM3. #AUT1. #P0 #P1 ,#P4 ou #P5 (exonération totale pendant 5 ans) : #Q0 #Q1 ,#Q2 |#P0 #P2 ,#P3 #P5 (exonération totale pendant 5 ans) : #Q0 #Q1.
www.data.gouv.fr/var/download/Delib09_50.xls
-
0,1191. #OM #OM3. #P0 #P1 (exonération totale pendant 4 ans) : #Q0 #Q1.
www.data.gouv.fr/var/download/Delib09_31.xls
-
- Exonération #P01 de #P1 ou d' #P2 #EX38 pour une durée de 5 ans. |#EX1 2 ans. |#EX2 2 ans..
www.data.gouv.fr/var/download/Delib09_38.xls
-
0,1427. #OM #OM2. #P0 #P1 ,#P4 #P5 (exonération à 80% pendant 2 ans) #P2 (exonération à 80% pendant 1 an) : #Q0 #Q1.
www.data.gouv.fr/var/download/Delib09_65.xls
-
-lGRYl- PP0P=QP/P
www.gamestatus.net/archive/ins/08-Jan-2012.html
|
|